Valley Clean Energy CAC Meeting

May 30, 2018 Davis Senior Center

1

Comparison and Examples of Utility Scale vs. Distributed Solar

- Utility Scale medium to large scale, typically designed as a stand-alone facility
- Distributed
 - Rooftop
 - Parking Lot

Rooftop and Parking Lot Solar

- Rooftop solar at the Winery, Brewery and Food Science Laboratory and solar panels shading cars at Parking Lot 1 on UC Davis Campus
- 756 kW capacity

Rooftop and Parking Lot Solar

- Rooftop and parking lot solar at the City of Woodland Police Department
- 0.45 MW capacity

Utility Scale Solar

- SMUD Feed-in-Tariff utility scale solar
- 10 MW capacity
- 128 acres

Utility Scale Solar

- SMUD Feed-in-Tariff utility scale solar
- 18 MW capacity
- 160 acres

Utility Scale Solar

- Antelope Valley Solar Ranch One utility scale solar
- 230 MW capacity
- Spread out over 2,100 acres

IRP Resource Portfolio Results

Resource Portfolio Alternatives

Portfolio	Portfolio Aspect	2018	2022	2026	2030					
Base	Load Forecast	IEPR								
	Resource Mix	Least cost Califor	nia resources. Lo	ocal renewables i	f cost effective.					
	RPS	42%	42%	45%	50%					
	Carbon Free	75%	75%	75%	75%					
Cleaner Base	Load Forecast	IEPR								
	Resource Mix I	Least cost California renewables and Local renewables where cost-competitive								
	RPS	42%	60%	70%	80%					
	Carbon Free	75%	100%	100%	100%					
Cleaner VCEA	Load Forecast	VCEA (Higher than IEPR due to omission of AAEE and AAPV)								
	Resource Mix Le	Least cost California renewables and Local renewables where cost-competitive								
	RPS	42%	60%	70%	80%					
	Carbon Free	75%	100%	100%	100%					
Clean Local	Load Forecast	IEPR								
	Resource Mix	Expand local wind, biomass, geothermal and solar from 2022.								
	RPS	42%	60%	70%	80%					
	Carbon Free	75%	100%	100%	100%					

Resource Portfolio Renewables

	Base				CleanerBase			CleanLocal			Cleaner VCEA					
	2018	2022	2026	2030	2018	2022	2026	2030	2018	2022	2026	2030	201 8	2022	2026	2030
Wind, MW	0	49	33	46	0	51	55	5	0	31	20	30	0	51	55	50
BTM Solar, MW	0	39	52	65	0	39	52	65	0	39	52	65	0	0	0	0
Solar, MW	0	69	91.5	91.5	0	120	140	173	0	85	89	104.5	0	121	150	190.5
Local Solar, MW	0	0	0	0	0	0	0	0	0	36.5	36.5	36.5	0	0	0	0
Geother mal, MW	0	0	0	0	0	0	0	0	0	6	6	6	0	0	0	0
Biomass, MW	0	0	0	0	0	0	0	0	0	0	10	10	0	0	0	0
4 hour Li- Ion Battery Storage, MW	0	0	3	20	0	3	7	20	0	3	7	20	0	3	7	20
RPS Delivered , %	42	42	45	50	42	60	70	80	42	60	70	80	42	60	70	80
Carbon Free, %	75	75	75	75	75	100	100	100	75	100	100	100	75	100	100	100

Resource Portfolio Generation Mix

11

2030 Snapshot of Peak Hour

Despite High Percentage of energy supply in contracted renewables, significant market purchases necessary to balance portfolio and have capacity available at peak

Resource Portfolio Capacity at Annual Peak Hour

Carbon Neutral vs Carbon Free

CLEAN ENERGY

Example of weekday in July 2030

Lower day-time emissions factor (than at night) means we can have 100% of total net energy provided by carbon free resources while having non-zero carbon emissions for the portfolio

Observations & Recommendations

Observations

RPS eligible renewable energy costs lower than long term CAISO market prices

High solar portfolio competitive with CAISO market prices

Price premium for carbon free (non-RPS) energy expected to remain moderate

Cost for renewable energy and storage have been falling dramatically in the past 10 years. It is likely that this trend continues

Economies of scale continue to make large scale renewables more cost effective than smaller ones;

Biomass and Geothermal are significantly higher cost and have limited potential in Yolo County

Local capacity development potential is sensitive to exact location and impact

Pursue 50% RPS by 2020 and 80% RPS by 2030

Recommendations

Target carbon neutrality (not carbon free) portfolio by 2022, depending on market price developments

Contract for regulatory mandated amounts of RPS (65% of RPS obligation) and opportunistically pursue additional deals as they arise

Focus on large scale "conventional" renewables to save costs and be open to local competitive offers

Fine-tune procurement strategy and carbon goals later in 2018 or 2019 using results from RFO and IRP filings of other LSEs

Conduct feasibility study for new renewable resources in Yolo county

IRP Action Plan

Additional Materials

Annual Electricity Demand

